
TIOA
RELEASE NOTES

v0.1.0 (BETA)

8/31/2006

Language changes	
 1
Typing	
 1
Associativity and Precedence	
 2
Invariant Scoping	
 3
Choose statement	
 3
Differential equations in trajectories	
3
IF-THEN-ELSE expression	
 3
Implicit Type Declarations	
 4
Type Selectors	
 4
Variable overloading	
 4
Null vocabulary	
 4
Floating-point literals	
 5
Scoping Rules	
 5

Plugins Notes	
 5
1. PVS	
 5
2. UPPAAL	
 7
3. Simulator	
 9

Language changes
Typing
The new implementation considers that Bool is a subtype of Nat. The type hierarchy for numbers is
thus as follows

Bool <: Nat <: Int <: Real <: AugmentedReal

	
 1

I
O A

Associativity and Precedence
The new implementation supports traditional associativity for all binary operators. In particular, an
expression like

x + y < z * w

now yields the “natural” parse tree

((x + y) < (z * w))
Rather than

((((x) + y) < z) * w)

The precedence and associativity follow traditional programming languages and are summarized be-
low:

Operator Description Associativity

()

[]

.

Parentheses (grouping)
Brackets (array subscript and tupling)
Member selection via object name

left

+ -

~

type:ex

Unary plus/minus
Unary logical negation
Type selection

right

* / % Binary Multiplication/division/modulus left

+ - Binary Addition/subtraction left

< <=

> >=

Relational less than/less than or equal to
Relational greater than/greater than or equal to

left

= ~= Relational is equal to/is not equal to left

** Exponentiation right

/\ Logical and left

\/ Logical or left

=> <=> Logical implication and equivalence left

\A \E Universal and Existential quantifiers left

	
 2

Invariant Scoping
Invariant scopes are not limited to the automaton they reference. For example, the TIOA model be-
low

automaton A
 signature output out
 states x: Bool
 transitions output out

automaton B
 signature output out
 states x: Bool
 transitions output out

invariant of A:
 A.x;
 B.x

used to report an error on the last line because B was unknown. The current implementation finds
B’s definition in the “parent” (global) scope and type checks the model correctly.

Choose statement
Choose statements require that the chosen variable’s type exactly equals the type of the left hand
value. For instance, in the TIOA model

automaton A
 signature output act
 states chosen: Int
 transitions
 output act
 eff
 chosen := choose x where 1 <= x /\ x <= 30; <-- x must be an Int
 chosen := choose x:Real where 1 <= x /\ x <= 30; <-- x cannot be a Real

The new checker rejects the last choose statement because the modeler forced x to be of type Real
which is a super type of chosen’s type.

Differential equations in trajectories
1. Overloading: The new checker does not allow the identifier ‘d’ to be used. It is reserved for

the derivative function. The old checker only prohibited overloading of ‘d’ as a Real -> Real func-
tion

2. Type Spec: The new checker extends the type spec of ‘d’ from Real -> Real to AugmentedReal ->
AugmentedReal. A number of examples from the Simulator used this construction.

IF-THEN-ELSE expression
This syntactic form is now obsoleted in favor of the more traditional lower case variant if-then-else

	
 3

Implicit Type Declarations
In the new checker no types are generated implicitly. All types must appear in a type definition
construction beginning with the key word “types”, ether in a vocabulary or in a global type declara-
tion. For instance, the declaration

Automaton A(type M)

Automaton B
 components A(Square)
 ...

will no longer introduce a type ‘Square’ implicitly. Instead, the modeler is requested to explicitly de-
clare which names denote types. To this end, the type definition construction is now authorized at
the top level. The example above could be rewritten as

types Square;
Automaton A(type M)

Automaton B
 components A(Square)
 ...

Type Selectors
Type selection used to be important to manually assist the front-end in resolving type ambiguities
when several objects of the same name but with different types coexist. The old front-end used to
attempt a type selection based on the typing context and the known objects. The new front-end im-
plement stricter scoping rules (resulting in fewer instances of ambiguous constructions) and is
equipped with a more flexible type inference mechanism capable to resolve type ambiguities more
often. As a result, manual type selection is becoming less and less useful and we strongly encourage
modelers to refrain from using it.

Variable overloading
Variables can no longer be overloaded by type. In each scope an Identifier can only refer to one
object.

Null vocabulary
The __.val method of the Null vocabulary was changed to a unary function val(__). For example an
expression

x.val = nil

now becomes

val(x)= nil

	
 4

Top level declarations

1. As stated before, types declaration can now appear at the top-level

2. Vocabulary import statements can also appear at the top-level (e.g., to import types needed to
instantiate automata)

Floating-point literals
It is now possible to enter floating-point literals directly (e.g. 2.5467)

Scoping Rules
The scoping mechanism of the new checker is much more extensive. Previously, variables existed
in the same scope and could be overloaded by using different types, and then selected using a type
selector. Now variables cannot be overloaded in the same scope, but they may be redefined or
shadowed in a nested scope, with the same type or a different type. This forces each identifier to
be unique in a given scope. Note that several constructions automatically create scopes, for instance

• Vocabularies: Scope for vocabulary body

• Automaton definition: Scope for the automaton formal and a nested scope for the automaton body

• Action: Scope for action formal and a nested scope for the action body

• Quantifiers: Scope for the nested expression

Plugins Notes

Each plugin imposes its own set of restrictions on the core TIOA language. Depending on which
tool is selected, your model may or may not comply and the front-end will report additional errors
that are tool dependent. The remainder of this document briefly reviews each tool and the restric-
tions imposed by that tool. Complete documentation on how to use each plugin can found in the
documentation directory.

1. PVS
Parametric Types
Parametric types in vocabularies and automaton specifications are not supported. For example, the
following are not supported:

vocabulary MyVoc defines MyType[T] ...

vocabulary myVoc(T: type) ...

automaton test(mytype:type) ...

	
 5

A work-around is to declare a type construct within a vocabulary, and then use the “inc1” option to
specify a PVS uninterpreted type in an include file. For example, one could write the following:

vocabulary myvocab
 types mytype
end
imports myvocab
automaton test
 signature output out
 states x:mytype, y:Seq[mytype], z:Null[mytype] ...

Then, one should use the “inc1” option to include a file containing an uninterpreted type in the PVS
output. For example, an include file named “file.inc” contains:

mytype: TYPE

Then the configuration file should contain the option “inc1:file.inc” on a single line.

Built-in Types
All built-in types are supported except “String” and “Mset”. In addition, for the “Seq” type, the as-
signment operator is not supported. Thus, the following statement is not supported, where “s” is of
type “Seq”:

s[i] := x

Identifiers
Reserved words in PVS should not be used as identifiers in the TIOA specification. In addition, the
translator also uses a fixed list of names in the output of the translation, and these names should be
avoided whenever possible to prevent unnecessary overloading in PVS. For example, names such as
“actions”, “delta_t”, “time”, “theory”, “begin”, etc. should not be used.

Action and transition signatures
Formal parameters of an action or transition should not use the “const” keyword, and should not be
literals. For example, the following is not allowed:

input send(const i, const j)

One could rewrite the above using a “where” clause into an acceptable form:

input send(i1:Int, j1:Int) where i=i1 /\ j=j1

As another example, the following is not allowed:

output out(0)

Again, it is possible rewrite using a “where” clause to obtain an acceptable form:

output out(i) where i=0

	
 6

Action and transition constructs
The following constructs within actions and transitions are not allowed:

• choose

• ensuring

• hidden

• local

Trajectory evolve clause
Evolve clause of a trajectory should be either a constant differential equation or a constant differen-
tial inclusion. Higher orders not supported currently. For example, the following expressions are
allowed:

d(x) = k, d(x) >= k, d(x)<= k, d(x) > k, d(x) < k,

where “k” is a literal constant.

Simulation relations
Only forward simulations are allowed. Backward simulations are not supported.

When a simulation relation is defined from automaton A to automaton B, both A and B should have
the same set of external actions.

Proof entries in a simulation relation are ignored.

Composition
Composite automata are not supported.

Schedules
Schedule blocks are ignored.

2. UPPAAL
Variable types
All the declared state variables could be only Int, Nat, Bool, Enum and the array of these four types
except time variable. Time variable can be only Real, which means set, map, tuple, sequence, union
etc. are all not allowed, imported vocabulary can only be Enum. Also, “const”, “type” and “local”
keywords are not allowed.

Disa%owed syntactic constructions
1. Where clause are not allowed, no matter appears in where, e.g., automaton header, signature etc.
2. “let” clause is not allowed
3. “choose” clause and “initially” clause are not allowed
4. “urgent when” clause is not allowed

	
 7

5. “ensuring” clause is not allowed
6. “hidden” actions are not allowed
7. Universal and existential quantifiers are not allowed (\A and \E)
8. Automaton state dereference is limited to components of composite automata
9. The “\infty” constant is not allowed
10. if-then, for loop statements are not allowed, effect statements are restricted to assignment and

if-then statements only. If an if-then statement is used there may only be one and all other
statements in the effects clause must be contained inside the body of the then clause.

Constructions that are discarded (The translator will simply discard the construction and carry on
with the translation):

1. Task blocks are ignored.
2. Invariant statements are ignored.
3. Schedule block are ignored.
4. Simulation (forward simulation, backward simulation) blocks are ignored

Functions
Only the following functions are supported by the model checker,

div, mod, pred, succ, min, max

Signatures
Signature overloading is not allowed

Transitions
1. Internal transitions can’t have parameters

2. Precondition clauses cannot contain disjunctions

Trajectories
Trajectory evolve clauses are limited to d(t)=1 (time evolves at constant rate 1). Trajectories have the
format

invariant mode = ...
stop when time = ...

where “mode” variable is fixed to be one of the enum value of the Location type. The differential
equation must have the form

d(t)=c

where c is a constant value typed as a real. The variable t in d(t) must be a real.

	
 8

3. Simulator
The simulator imposes a certain number of restrictions on the core TIOA language. These restric-
tions are listed below and will be progressively removed as new releases come out.

Nu% Vocabulary
The simulator does not support the Null vocabulary. Any attempt to import this builtin vocabulary
will result in a semantic error. This is a temporary restriction that will be lifted shortly.

State variables declarations
The declaration of a state variable must always include an initialization statement. For instance the
fragment

automaton A
state
	
x : Int

will trigger an error whereas

automaton A
state
	
x : Int := 10;

is acceptable.

composition
Currently IR does not implement automata composition, hence only primitive automata are al-
lowed in the specifications.

det statements
det statements are not implemented in the IR.

Simulation
Simulation is not implemented in the IR.

tasks
Tasks are not implemented in the IR.

Dereferencing
This is only a temporary restriction. The simulator only allows a single dereferencing level, as dem-
onstrated in this example. However, even with this restriction one can still access deeper levels with
use of the local variables.

Expressions and quantifiers
Quantifier expression that the simulator can resolve have to	
 based on enumerable types, examples
of things that are not	
 enumerable are:

	
 9

	
AugmentedReal, Char, DiscreteReal, Int, Real, Seq, MSet, Null, Set, String

This means that the we only support quantifiers on:

	
Bool, Nat, and user Enum vocabs
choose statements
Currently the choose statement may only appear in the state declarations. The choose statements
on numerical built-in data types (i.e. Nat, Int, Real, DiscreteReal, AugmentedReal) and may be of the
following form:

	
 := choose x where ____ (/\ or \/) ____
	
 := choose x where ____

	

 where the ____ may be a simple of the form

	
 x (~=, =, >, >=, <, <=) literal
	
 or

	
 literal (~=, =, >, >=, <, <=) x
	

Note that these are legal on all data types:

	
 := choose
	
 := choose x

	

Of course these are equivalent to simply not initializing the state variable at all.

Choose statements may not appear in other parts of the specification.

global types
Global types have to be encapsulated by

vocabulary
 ...
end

	

Otherwise the simulator will not recognize them.

let definitions
Unfortunately, let definitions are not allowed. The simulator cannot find implementations for these
functions and hence does not know how to simulate them.

Schedules
Simulator must have a schedule block in order to simulate any specification. If no schedule block is
given then the only output that will be given to the user is that of the internal representation of the
specification that is passed in to the simulator. However, the simulator will demand a schedule block
if two conditions are true:

	
 10

1. specification has trajectories
2. specification has parametrized actions
For-statements
Simulator supports only these for-statements that have as a predicate a condition on a set, for exam-
ple:

for j:Nat in s do
 ...
od;

where s is a Set[Nat]. Any other predicate is not supported.

Evolve statement
The simulator currently restricts the evolve statements to the following format:

d(x) = lit

where lit may be an integer or a decimal value. All other evolve statements are not supported, some
examples of these are:

d(x) > 5;
d(x) = x; --- where x is a variable

Multiple automata
Simulator currently supports only a single primitive automaton, this means no composition and no
simulation.

Smart fire
Currently the simulator requires user to provide a schedule which includes fire statements that are
followed by an action kind and name, with parameters if any are needed. Basically, it is not able to
choose an enable action from the pool of all enabled action in a given state.

Transition terms
The parameters in the transition must be variables. Moreover, if a transition has more than one pa-
rameter, then the variables must have unique names. Note that the simulator will not complain
when it is provided with a constant value, such as:

output out(10)
output out(true)

	

However, there are two issues, (1) providing a constant literal as a parameter does not make the tran-
sition unique and the first one will be called (as listed in the specification). (2) This is an example of a
sloppy programming, since this parameter cannot be assigned to any variable inside the transition.

	
 11

User defined operators in vocabulary
As it is the case with the let statements, these are not supported.

Automata formal parameters
These can only be of the following type:

1. Nat
2. Int
3. Real
4. DiscreteReal
5. AugmentedReal
6. Bool

Enjoy!

	
 12

